Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Adv Res ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38508446

RESUMO

INTRODUCTION: Diarrheic disease is a common intestinal health problem worldwide, causing great suffering to humans and animals. Precise manipulation strategies based on probiotics to combat diarrheic diseases have not been fully developed. OBJECTIVES: The aim of this study was to investigate the molecular mechanisms by which probiotics manipulate macrophage against diarrheic disease. METHODS: Metagenome reveals gut microbiome profiles of healthy and diarrheic piglets. Fecal microbial transplantation (FMT) was employed to explore the causal relationship between gut microbes and diarrhea. The protective role of probiotics and their derived extracellular vesicles (EVs) was investigated in ETEC K88-infected mice. Macrophage depletion was performed to assess the role of macrophages in EVs against diarrhea. Execution of in vitro cell co-culture and transcriptome analyses elucidated the molecular mechanisms by which EVs modulate the macrophage and intestinal epithelial barrier. RESULTS: Escherichia coli was enriched in weaned diarrheic piglets, while Lactobacillus johnsonii (L. john) showed a negative correlation with Escherichia coli. The transmission of diarrheic illness symptoms was achieved by transferring fecal microbiota, but not metabolites, from diarrheic pigs to germ-free (GF) mice. L. john's intervention prevented the transmission of disease phenotypes from diarrheic piglets to GF mice. L. john also reduces the gut inflammation induced by ETEC K88. The EVs secreted by L. john demonstrated enhanced efficacy in mitigating the adverse impacts induced by ETEC K88 through the modulation of macrophage phenotype. In vitro experiments have revealed that EVs activate M2 macrophages in a manner that shuts down ERK, thereby inhibiting NLRP3 activation in intestinal epithelial cells. CONCLUSION: Our results reveal that intestinal microbiota drives the onset of diarrheic disease and that probiotic-derived EVs ameliorate diarrheic disease symptoms by modulating macrophage phenotypes. These findings can enhance the advancement of innovative therapeutic approaches for diarrheic conditions based on probiotic-derived EVs.

2.
Environ Int ; 185: 108525, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38408410

RESUMO

Deoxynivalenol (DON) is a common environmental pollutant that poses a serious health risk to humans worldwide. This study was aim to explore whether gut microbiota is involved in DON-induced intestinal toxicity as well as to reveal effect of probiotics derived from gut microbiota in protecting intestinal barrier and to elucidate mechanism. We found that DON caused disturbed gut microbiota, particularly Lactobacillus murinus (L. murinus) deficiency. DON enhanced M1 macrophage polarization and decreased tight junction protein expression. Microbiota transplantation experiments showed that transfer of DON-disrupted microbiota to healthy mice resulted in delivery of DON-induced intestinal toxicity. Besides, DON lost its damaging effect on macrophage and intestinal barrier in antibiotic-treated mice. Further intervention experiments revealed that L. murinus induce macrophage conversion from M1 to M2 phenotype through secreted extracellular vesicles (EVs) to alleviate DON-induced intestinal barrier disruption. Mechanistically, EVs activate TLR2 to promote M2 macrophage polarization and release IL-10, which in turn enhances intestinal barrier function. Upon successful translation of its efficacy into clinical practice, EVs created from L. murinus could be a novel possible treatment strategy for DON-induced gut disease.


Assuntos
Mucosa Intestinal , Lactobacillus , Tricotecenos , Humanos , Animais , Camundongos , Tricotecenos/toxicidade
3.
Environ Sci Pollut Res Int ; 31(11): 16241-16255, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340302

RESUMO

The consumption of disposable plastic products and disinfectants has surged during the global COVID-19 pandemic, as they play a vital role in effectively preventing and controlling the spread of the virus. However, microplastic pollution and the excessive or improper use of disinfectants contribute to the increased environmental tolerance of microorganisms. Microplastics play a crucial role as vectors for microorganisms and plankton, facilitating energy transfer and horizontal gene exchange. The increase in the use of disinfectants has become a driving force for the growth of disinfectant resistant bacteria (DRB). A large number of microorganisms can have intense gene exchange, such as plasmid loss and capture, phage transduction, and cell fusion. The reproduction and diffusion rate of DRB in the environment is significantly higher than that of ordinary microorganisms, which will greatly increase the environmental tolerance of DRB. Unfortunately, there is still a huge knowledge gap in the interaction between microplastics and disinfectant resistance genes (DRGs). Accordingly, it is critical to comprehensively summarize the formation and transmission routes of DRGs on microplastics to address the problem. This paper systematically analyzed the process and mechanisms of DRGs formed by microbes. The interaction between microplastics and DRGs and the contribution of microplastic on the diffusion and spread of DRGs were expounded. The potential threats to the ecological environment and human health were also discussed. Additionally, some challenges and future priorities were also proposed with a view to providing useful basis for further research.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos , Pandemias , Monitoramento Ambiental , Poluição Ambiental/análise , Meio Ambiente , Bactérias/genética , Ecossistema , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 916: 170299, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38272086

RESUMO

The detrimental effects of plastic and microplastic accumulation on ecosystems are widely recognized and indisputable. The emergence of biodegradable plastics (BPs) offers a practical solution to plastic pollution. Problematically, however, not all BPs can be fully degraded in the environment. On the contrary, the scientific community has demonstrated that BPs are more likely than conventional plastics (CPs) to degrade into micro/nanoplastics and release additives, which can have similar or even worse effects than microplastics. However, there is very limited information available on the environmental toxicity assessment of BMPs. The absence of a toxicity evaluation system and the uncertainty regarding combined toxicity with other pollutants also impede the environmental toxicity assessment of BMPs. Currently, research is focused on thoroughly exploring the toxic effects of biodegradable microplastics (BMPs). This paper reviews the pollution status of BMPs in the environment, the degradation behavior of BPs and the influencing factors. This paper comprehensively summarizes the ecotoxicological effects of BPs on ecosystems, considering animals, plants, and microorganisms in various environments such as water bodies, soil, and sediment. The focus is on distinguishing between BMPs and conventional microplastics (CMPs). In addition, the combined toxic effects of BMPs and other pollutants are also being investigated. The findings suggest that BMPs may have different or more severe impacts on ecosystems. The rougher and more intricate surface of BMPs increases the likelihood of causing mechanical damage to organisms and breaking down into smaller plastic particles, releasing additives that lead to a series of cascading negative effects on related organisms and ecosystems. In the case of knowledge gaps, future research is also proposed and anticipated to investigate the toxic effects of BMPs and their evaluation.


Assuntos
Plásticos Biodegradáveis , Poluentes Ambientais , Animais , Plásticos Biodegradáveis/toxicidade , Ecossistema , Poluentes Ambientais/toxicidade , Poluição Ambiental , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade
5.
Sci Total Environ ; 912: 169571, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38142997

RESUMO

The application of organic fertilizers is becoming an undeniable source of microplastics and antibiotic resistance genes (ARGs) in agricultural soils. The complex microbial activity further transfers resistance genes and their host bacteria to agricultural products and throughout the entire food chain. Therefore, the current main focus is on reducing the abundance of microplastics and ARGs in organic fertilizers at the source, as well as managing microplastics and ARGs in soil. The control of microplastic abundance in organic fertilizers is currently only achieved through pre-composting selection and other methods. However, there are still many shortcomings in the research on the distribution characteristics, propagation and diffusion mechanisms, and control technologies of ARGs, and some key scientific issues still need to be urgently addressed. The high-temperature composting of organic waste can effectively reduce the abundance of ARGs in organic fertilizers to a certain extent. However, it is also important to consider the spread of ARGs in residual antibiotic-resistant bacteria (ARB). This article systematically explores the pathways and interactions of microplastics and resistance genes entering agricultural soils through the application of organic fertilizers. The removal of microplastics and ARGs from organic fertilizers was discussed in detail. Based on the limitations of existing research, further investigation in this area is expected to provide valuable insights for the development and practical implementation of technologies aimed at reducing soil microplastics and resistance genes.


Assuntos
Microplásticos , Plásticos , Fertilizantes/análise , Genes Bacterianos , Antagonistas de Receptores de Angiotensina , Microbiologia do Solo , Esterco/microbiologia , Inibidores da Enzima Conversora de Angiotensina , Solo , Bactérias/genética , Antibacterianos
6.
Aquat Toxicol ; 264: 106725, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37806023

RESUMO

The widespread presence of micro/nanoplastics in aquatic ecosystems has certainly affected ecosystem functions and food chains/webs. The impact is worsened by the accumulation of different pollutants and microorganisms on the surface of microplastics. At the tissue, cellular, and molecular levels, micro/nanoplastics and the contaminants they carry can cause damage to aquatic organisms. Problematically, the toxic mechanism of micro/nanoplastics and contaminants on aquatic organisms is still not fully understood. Algae are key organisms in the aquatic ecosystem, serving as primary producers. The investigation of the toxic effects and mechanisms of micro/nanoparticles and pollutants on algae can contribute to understanding the impact on the aquatic ecosystem. Micro/nanoplastics inhibit algal growth, reduce chlorophyll and photosynthesis, induce ultrastructural changes, and affect gene expression in algae. The effects of energy flow can alter the productivity of aquatic organisms. The type, particle size, and concentration of micro/nanoparticles can influence their toxic effects on algae. Although there has been some research on the toxic effects of algae, the limited information has led to a significant lack of understanding of the underlying mechanisms. This paper provides a comprehensive review of the interactions between micro/nanoplastics, pollutants, and algae. The effects of various factors on algal toxicity are also analyzed. In addition, this article discusses the combined effects of microplastics, global warming, and oil pollution on algae and aquatic ecosystems in the context of global change. This research is of great importance for predicting future environmental changes. This review offers a more comprehensive understanding of the interactions between microplastics/nanoplastics and algae, as well as their impact on the carbon cycle.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Ecossistema , Microplásticos/toxicidade , Plásticos/toxicidade , Poluentes Ambientais/farmacologia , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos
7.
Sci Total Environ ; 905: 167192, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730038

RESUMO

Microplastic pollution in the environment has aroused widespread concerns, however, the potential environmental risks caused by excessive use of disinfectants are still unknown. Disinfectants with doses below the threshold can enhance the communication of resistance genes in pathogenic microorganisms, promoting the development and spread of antimicrobial activity. Problematically, the intensification of microplastic pollution and the increase of disinfectant consumption will become a key driving force for the growth of disinfectant resistance bacteria (DRB) and disinfectant resistance genes (DRGs) in the environment. Disinfection plays a crucial role in ensuring water safety, however, the presence of microplastics and DRGs seriously disturb the water disinfection process. Microplastics can reduce the concentration of disinfectant in the local environment around microorganisms and improve their tolerance. Microorganisms can improve their resistance to disinfectants or generate resistance genes via phenotypic adaptation, gene mutations, and horizontal gene transfer. However, very limited information is available on the impact of DRB and DRGs on disinfection process. In this paper, the contribution of microplastics to the migration and transmission of DRGs was analyzed. The challenges posed by the presence of microplastics and DRGs on conventional disinfection were thoroughly discussed. The knowledge gaps faced by relevant current research and further research priorities have been proposed in order to provide a scientific basis in the future.


Assuntos
Desinfetantes , Desinfetantes/análise , Desinfecção , Microplásticos , Plásticos , Água , Bactérias/genética
8.
Sci Total Environ ; 902: 166474, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625720

RESUMO

The pollution status and the harm caused by microplastics and antibiotic resistance genes (ARGs) in aquatic ecosystems have been a growing concern. The presence of microplastics could accelerate the transfer and spread of ARGs. Before sewage reaches natural water bodies, microplastics and ARGs need to be eliminated through specific processes. Constructed wetlands are currently an effective and environmentally friendly wastewater treatment process. Research has shown significant effectiveness in removing microplastics and ARGs. Microplastics and ARGs can be removed through processes such as adsorption, capture, adhesion, and biodegradation. However, long-term continuous operation could lead to constructed wetlands becoming significant reservoirs of microplastics and ARGs. Inflow loads and seasonal variations in constructed wetlands may result in the reintroduction of persistent microplastics and ARGs into the receiving water body, establishing the constructed wetland as a continuous source of these pollutants in the receiving water body. The key to the widespread application of constructed wetlands lies in solving this challenging problem. Therefore, although constructed wetlands serve as a green strategy for removing microplastics and ARGs, there are still many gaps in our knowledge. Based on the current accumulation of microplastics and ARGs in constructed wetlands, this paper summarizes the removal of microplastics and ARGs in existing constructed wetlands and explores the interaction between them. Additionally, it proposes suggestions for optimizing the process and improving the reliability of monitoring microplastics and ARGs in sewage.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Antibacterianos/análise , Áreas Alagadas , Águas Residuárias , Esgotos , Eliminação de Resíduos Líquidos , Microplásticos , Plásticos , Ecossistema , Genes Bacterianos , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise , Resistência Microbiana a Medicamentos/genética , Água
9.
NPJ Biofilms Microbiomes ; 9(1): 33, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280255

RESUMO

The diarrheal disease causes high mortality, especially in children and young animals. The gut microbiome is strongly associated with diarrheal disease, and some specific strains of bacteria have demonstrated antidiarrheal effects. However, the antidiarrheal mechanisms of probiotic strains have not been elucidated. Here, we used neonatal piglets as a translational model and found that gut microbiota dysbiosis observed in diarrheal piglets was mainly characterized by a deficiency of Lactobacillus, an abundance of Escherichia coli, and enriched lipopolysaccharide biosynthesis. Limosilactobacillus mucosae and Limosilactobacillus reuteri were a signature bacterium that differentiated healthy and diarrheal piglets. Germ-free (GF) mice transplanted with fecal microbiota from diarrheal piglets reproduced diarrheal disease symptoms. Administration of Limosilactobacillus mucosae but not Limosilactobacillus reuteri alleviated diarrheal disease symptoms induced by fecal microbiota of diarrheal piglets and by ETEC K88 challenge. Notably, Limosilactobacillus mucosae-derived extracellular vesicles alleviated diarrheal disease symptoms caused by ETEC K88 by regulating macrophage phenotypes. Macrophage elimination experiments demonstrated that the extracellular vesicles alleviated diarrheal disease symptoms in a macrophage-dependent manner. Our findings provide insights into the pathogenesis of diarrheal disease from the perspective of intestinal microbiota and the development of probiotic-based antidiarrheal therapeutic strategies.


Assuntos
Antidiarreicos , Microbiota , Animais , Suínos , Camundongos , Diarreia/veterinária , Lactobacillus , Bactérias , Escherichia coli , Homeostase
10.
J Nutr ; 153(8): 2497-2511, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343627

RESUMO

BACKGROUND: Limosilactobacillus johnsoni (L. j) and Limosilactobacillus mucosae (L. m) can alleviate the inflammatory response. OBJECTIVES: This study aimed to elucidate the underlying mechanisms by which L. j- and L. m-derived extracellular vesicles (EVs) mitigate lipopolysaccharide (LPS)-induced intestinal injury. METHODS: Piglets were assigned to 4 groups: oral phosphate-buffered saline inoculation for 2 wk prior to intraperitoneal injection of physiological saline or LPS, and oral L. j/L. m inoculation for 2 wk prior to intraperitoneal injection of LPS. The intestinal integrity, macrophage markers, cytokine levels, and microbiota were determined. The cytokine levels and macrophage phenotype were detected after L. j/L. m and their EVs were coincubated with macrophages. The levels of cytokines, tight junction proteins, and apoptosis were measured after intestinal epithelial cells were cocultured with macrophages. RESULTS: LPS challenge decreased jejunal villus length; expression levels of zonula occludens-1 (ZO-1), occludin, arginase-1 (Arg1), and interleukin (IL)-10; and number of CD163+ cells and increased the expression levels of inducible nitric oxide synthase (iNOS), IL-1ß, IL-6, and tumor necrosis factor (TNF)-α compared with that in the control. L. j and L. m pretreatment rescued the aforementioned indicators compared with LPS challenge. Pretreatment of L. j and L. m and their EVs reversed the levels of IL-1ß, IL-6, TNF-α, and IL-10 and the gene expression of iNOS and Arg1 in the LPS group in macrophages. Pretreatment with L. j and L. m-derived EVs increased ZO-1 and occludin mRNA expression and reduced IL-1ß, caspase-3, and bax gene expression in intestinal epithelial cells of the coculture system. Enzyme-treated EVs were less effective than native EVs. CONCLUSIONS: This study suggests that EVs secreted by L. j and L. m control inflammation by modulating macrophage polarization, thereby improving intestinal barrier function.


Assuntos
Vesículas Extracelulares , Lipopolissacarídeos , Suínos , Animais , Interleucina-6 , Ocludina/genética , Citocinas/genética , Citocinas/metabolismo , Fator de Necrose Tumoral alfa , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo
11.
Microbiol Spectr ; 11(3): e0002323, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37166318

RESUMO

To date, studies on the swine gut microbiome have focused almost exclusively on bacteria. Despite recent advances in the understanding of the swine gut bacteriome at different growth stages, a comprehensive longitudinal study of the lifetime dynamics of the swine gut virome is lacking. Here, we used metagenomic sequencing combined with bioinformatic analysis techniques to characterize the gut viromes of parental-generation and offspring pigs at different biological classification levels. We collected 54 fecal samples from 36 parental-generation pigs (18 breeding boars [Duroc] and 18 pregnant/lactating sows [Landrace]) and 108 fecal samples from 18 offspring pigs during the lactation (day 3), nursery (days 26, 35, and 49), growing (day 120), and finishing (day 180) stages. Alpha diversity, including community richness (richness index) and diversity (Shannon index), showed an overall increasing trend in offspring pigs. Distinct shifts (beta diversity) in the microbiome structure along different growth stages were observed. The linear discriminant analysis effect size (LEfSe) algorithm revealed 53 viral genus that are stage specific. Host prediction results showed that enteric viruses are probably correlated with carbohydrate decomposition. We identified abundant auxiliary carbohydrate-active enzyme (CAZyme) genes from enteric viruses, most of which are glycoside hydrolase genes and participate in the biolysis of complex polysaccharides. IMPORTANCE This study shows that distinct stage-associated swine gut viromes may be determined by age and/or gut physiology at different growth stages, and enteric viruses probably manipulate carbohydrate decomposition by abundant glycoside hydrolases. These findings fill a gap in the longitudinal pattern of the swine gut virome and lay the foundation for research on the function of swine enteric viruses.


Assuntos
Infecções por Enterovirus , Viroma , Gravidez , Suínos , Animais , Masculino , Feminino , Estudos Longitudinais , Lactação , Fezes/microbiologia , Bactérias/genética
12.
Front Immunol ; 14: 1143526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234168

RESUMO

Fecal microbiota transplantation (FMT) is an emerging and effective therapy for the treatment of inflammatory bowel disease (IBD). Previous studies have reported that compared with FMT, whole intestinal microbiota transplantation (WIMT) can more precisely replicate the community structure and reduce the inflammatory response of the host. However, it remains unclear whether WIMT is more effective in alleviating IBD. To examine the efficacy of WIMT and FMT in the intervention of IBD, GF (Germ-free) BALB/c mice were pre-colonized with whole intestinal microbiota or fecal microbiota before being treated with dextran sodium sulfate (DSS). As expected, the symptoms of colitis were alleviated by both WIMT and FMT, as demonstrated by the prevention of body weight loss and decreased the Disease activity index and histological scores in mice. However, WIMT's anti-inflammatory effect was superior to that of FMT. In addition, the inflammatory markers myeloperoxidase (MPO) and eosinophil peroxidase were dramatically downregulated by WIMT and FMT. Furthermore, the use of two different types of donors facilitated the regulation of cytokine homeostasis in colitis mice; the level of the pro-inflammatory cytokine IL-1ß in the WIMT group was significantly lower than that in the FMT group, while the level of the anti-inflammatory factor IL-10 was significantly higher than that in the FMT group. Both groups showed enhanced expression of occludin to protect the intestinal barrier in comparison with the DSS group, and the WIMT group demonstrated considerably increased levels of ZO-1. The sequencing results showed that the WIMT group was highly enriched in Bifidobacterium, whereas the FMT group was significantly enriched in Lactobacillus and Ochrobactrum. Correlation analysis revealed that Bifidobacterium was negatively correlated with TNF-α, whereas Ochrobactrum was positively correlated with MPO and negatively correlated with IL-10, which might be related to different efficacies. Functional prediction using PICRUSt2 revealed that the FMT group was considerably enriched in the L-arginine biosynthesis I and L-arginine biosynthesis IV pathway, whereas the WIMT group was enriched in the L-lysine fermentation to acetate and butanoate pathway. In conclusion, the symptoms of colitis were subsided to varying degrees by the two different types of donors, with the WIMT group being more effective than the FMT group. This study provides new information on clinical interventions for IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Transplante de Microbiota Fecal/métodos , Interleucina-10 , Colite/induzido quimicamente , Colite/terapia , Colite/microbiologia , Citocinas/metabolismo , Arginina
13.
Nutrients ; 15(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049457

RESUMO

Neonatal diarrhea is one of the most severe diseases in human beings and pigs, leading to high mortality and growth faltering. Gut microbiome-related studies mostly focus on the relationship between bacteria and neonatal diarrhea onset, and no research study has investigated the role of the gut virome in neonatal diarrhea. Here, using metagenomic sequencing, we characterized the fecal viral community of diarrheal and healthy neonatal piglets. We found that the viral community of diarrheal piglets showed higher individual heterogeneity and elevated abundance of Myoviridae. By predicting the bacterial host of the identified viral genomes, phages infecting Proteobacteria, especially E. coli, were the dominant taxa in neonatal diarrheal piglets. Consistent with this, the antibiotic resistance gene of E. coli origin was also enriched in neonatal diarrheal piglets. Finally, we established a random forest model to accurately discriminate between neonatal diarrheal piglets and healthy controls and identified genus E. coli- and genus listeria-infecting bacteriophages, including psa and C5 viruses, as key biomarkers. In conclusion, we provide the first glance of viral community and function characteristics in diarrheal and healthy neonatal piglets. These findings expand our understanding of the relationship among phages, bacteria and diarrhea, and may facilitate the development of therapeutics for the prevention and treatment of neonatal diarrhea.


Assuntos
Bacteriófagos , Escherichia coli , Animais , Suínos , Recém-Nascido , Humanos , Bacteriófagos/genética , Diarreia/veterinária , Diarreia/microbiologia , Bactérias , Fezes/microbiologia
14.
Microbiome ; 11(1): 19, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721210

RESUMO

BACKGROUND: Low birth weight (LBW) is associated with intestinal inflammation and dysbiosis after birth. However, the underlying mechanism remains largely unknown. OBJECTIVE: In the present study, we aimed to investigate the metabolism, therapeutic potential, and mechanisms of action of bile acids (BAs) in LBW-induced intestinal inflammation in a piglet model. METHODS: The fecal microbiome and BA profile between LBW and normal birth weight (NBW) neonatal piglets were compared. Fecal microbiota transplantation (FMT) was employed to further confirm the linkage between microbial BA metabolism and intestinal inflammation. The therapeutic potential of ursodeoxycholic acid (UDCA), a highly differentially abundant BA between LBW and NBW piglets, in alleviating colonic inflammation was evaluated in both LBW piglets, an LBW-FMT mice model, and a DSS-induced colitis mouse model. The underlying cellular and molecular mechanisms by which UDCA suppresses intestinal inflammation were also investigated in both DSS-treated mice and a macrophage cell line. Microbiomes were analyzed by using 16S ribosomal RNA sequencing. Fecal and intestinal BA profiles were measured by using targeted BA metabolomics. Levels of farnesoid X receptor (FXR) were knocked down in J774A.1 cells with small interfering RNAs. RESULTS: We show a significant difference in both the fecal microbiome and BA profiles between LBW and normal birth weight animals in a piglet model. Transplantation of the microbiota of LBW piglets to antibiotic-treated mice leads to intestinal inflammation. Importantly, oral administration of UDCA, a major BA diminished in the intestinal tract of LBW piglets, markedly alleviates intestinal inflammation in LBW piglets, an LBW-FMT mice model, and a mouse model of colitis by inducing M2 macrophage polarization. Mechanistically, UDCA reduces inflammatory cytokine production by engaging BA receptor FXR while suppressing NF-κB activation in macrophages. CONCLUSIONS: These findings establish a causal relationship between LBW-associated intestinal abnormalities and dysbiosis, suggesting that restoring intestinal health and postnatal maldevelopment of LBW infants may be achieved by targeting intestinal microbiota and BA metabolism. Video Abstract.


Assuntos
Colite , Microbioma Gastrointestinal , Suínos , Animais , Camundongos , Ácido Ursodesoxicólico , Peso ao Nascer , Disbiose/tratamento farmacológico , Inflamação/tratamento farmacológico , Modelos Animais de Doenças
15.
Antioxidants (Basel) ; 11(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36358516

RESUMO

During late gestation and lactation, oxidative stress in sows can affect their health and reproductive performance. Supplemental amino acid contributes to the antioxidant capacity of pigs. This study was conducted to evaluate the effects of different combinations of Gln, Leu and γ-GABA (amino acid mixtures, AAMs) during late gestation and lactation on the performance of the sows and their offspring. Fifty large white × landrace sows were randomly assigned to 5 groups (n = 10), including a control group and four AAMs groups (AAMs1, Gln + Leu; AAMs2 (Gln + GABA; AAMs3, Leu + GABA; AAMs4, Gln + Leu + GABA). AAMs supplementation improved the antioxidant capacity of sows, including significantly enhanced total antioxidant capacity in AAMs2, 3 and 4 groups and reduced malonaldehyde concentration in AAMs1, 3 and 4 groups. Additionally, all AAMs significantly increased lactoprotein, total solid and IgA levels of colostrum in sows during lactation. Average body weight of piglets on day 21 after birth in all AAMs groups were significantly increased. Furthermore, the significantly increased total antioxidant capacity was observed in the piglets of every AAMs group. In conclusion, supplementing AAMs during late gestation and lactation improved the antioxidant capacity of sows and colostrum composition, thereby enhancing antioxidant status and the growth performance of piglets. This study provides the possibility of maternal amino acid mixtures to improve the productivity of the swine industry.

16.
Microbiol Spectr ; 10(4): e0169822, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35913177

RESUMO

Diarrhea caused by early-weaning-induced stress can increase mortality rates and reduce growth performance of piglets, seriously harming the livestock industry. To date, studies on the gut microbiome of early-weaned piglets have focused almost exclusively on bacteria, while studies on their gut virome are extremely lacking. Here, we used metagenomic and metatranscriptomic sequencing combined with bioinformatic analysis techniques to preliminarily characterize the intestinal virome of early-weaned piglets at different biological classification levels. The alpha diversity of enteroviruses was generally elevated in early-weaned piglets with diarrhea, compared to healthy piglets, whereas the two groups of piglets showed no significant difference in beta diversity. In addition, the species compositions of the gut virome were similar between healthy piglets and piglets with diarrhea, while their respective dominant species were somewhat different. We also identified 58 differential DNA viruses and 16 differential RNA viruses between the two groups of piglets at all biological taxonomic levels. Of these, 1 (family Dhakavirus) and 6 (phylum Artverviricota, class Revtraviricetes, order Ortervirales, family Retroviridae, genus Gammaretrovirus, and species Kirsten murine sarcoma virus) specific viruses disappeared from the intestines of healthy piglets and piglets with diarrhea, respectively. Moreover, we found that some DNA and RNA viruses formed strong correlations among themselves or between them. IMPORTANCE This study systematically reveals the biological diversity, structure, and composition of intestinal DNA and RNA virus profiles in early-weaned piglets. Furthermore, characteristics of differences in gut viromes between early-weaned healthy piglets and piglets with diarrhea were also elucidated. Importantly, some potential biomarkers for early-weaned piglets with diarrhea were identified. These findings fill a gap for the early-weaned piglet gut virome and lay the foundation for the development of strategies to target enteroviruses for the prevention and treatment of early-weaning-induced piglet diarrhea.


Assuntos
Microbioma Gastrointestinal , Viroma , Animais , Bactérias/genética , Diarreia/microbiologia , Diarreia/veterinária , Microbioma Gastrointestinal/genética , Camundongos , Suínos , Viroma/genética , Desmame
17.
Microbiol Spectr ; 10(4): e0136822, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35762770

RESUMO

Microbiological treatments are expected to have a role in the future management of inflammatory bowel disease (IBD). Clostridium butyricum (C. butyricum) is a probiotic microorganism that exhibits beneficial effects on various disease conditions. Although many studies have revealed that C. butyricum provides protective effects in mice with colitis, the way C. butyricum establishes beneficial results in the host remains unclear. In this study, we investigated the mechanisms by which C. butyricum modifies the gut microbiota, produces bacterial metabolites that may be involved, and, specifically, how microbial extracellular vesicles (EVs) positively influence IBD, using a dextran sulfate sodium (DSS)-induced colitis murine model in mice. First, we showed that C. butyricum provides a protective effect against colitis, as evidenced by the prevention of body weight loss, a reduction in the disease activity index (DAI) score, a shortened colon length, decreased histology score, and an improved gut barrier function, accompanied by reduced levels of pathogenic bacteria, including Escherichia/Shigella, and an increased relative abundance of butyrate-producing Clostridium sensu stricto-1 and Butyricicoccus. Second, we also confirmed that the gut microbiota and metabolites produced by C. butyricum played key roles in the attenuation of DSS-induced experimental colitis, as supported by the profound alleviation of colitis effects following fecal transplantation or fecal filtrate insertion supplied from C. butyricum-treated mice. Finally, C. butyricum-derived EVs protected the gut barrier function, improved gut microbiota homeostasis in ulcerative colitis, and contributed to overall colitis alleviation. IMPORTANCE This study indicated that C. butyricum provided a prevention effect against colitis mice, which involved protection of the intestinal barrier and positively regulating gut microbiota. Furthermore, we confirmed that the gut microbiota and metabolites that were induced by C. butyricum also contributed to the attenuation of DSS-induced colitis. Importantly, C. butyricum-derived EVs showed an effective impact in alleviating colitis.


Assuntos
Clostridium butyricum , Colite , Vesículas Extracelulares , Doenças Inflamatórias Intestinais , Animais , Clostridium butyricum/fisiologia , Colite/induzido quimicamente , Colite/microbiologia , Colite/terapia , Colo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Homeostase , Camundongos
18.
Front Immunol ; 13: 836542, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237276

RESUMO

In clinical practice, fecal microbiota transplantation (FMT) has been used to treat inflammatory bowel disease (IBD), and has shown certain effects. However, the selection of FMT donors and the mechanism underlying the effect of FMT intervention in IBD require further exploration. In this study, dextran sodium sulfate (DSS)-induced colitis mice were used to determine the differences in the protection of colitis symptoms, inflammation, and intestinal barrier, by FMT from two donors. Intriguingly, pre-administration of healthy bacterial fluid significantly relieved the symptoms of colitis compared to the ulcerative colitis (UC) bacteria. In addition, healthy donor (HD) bacteria significantly reduced the levels of inflammatory markers Myeloperoxidase (MPO) and Eosinophil peroxidase (EPO), and various pro-inflammatory factors, in colitis mice, and increased the secretion of the anti-inflammatory factor IL-10. Metagenomic sequencing indicated higher species diversity and higher abundance of anti-inflammatory bacteria in the HD intervention group, including Alistipes putredinis, Akkermansia muciniphila, Bifidobacterium adolescentis, short-chain fatty acids (SCFAs)-producing bacterium Christensenella minuta, and secondary bile acids (SBAs)-producing bacterium Clostridium leptum. In the UC intervention group, the SCFA-producing bacterium Bacteroides stercoris, IBD-related bacterium Ruminococcus gnavus, Enterococcus faecalis, and the conditional pathogen Bacteroides caccae, were more abundant. Metabolomics analysis showed that the two types of FMT significantly modulated the metabolism of DSS-induced mice. Moreover, compared with the UC intervention group, indoleacetic acid and unsaturated fatty acids (DHA, DPA, and EPA) with anti-inflammatory effects were significantly enriched in the HD intervention group. In summary, these results indicate that FMT can alleviate the symptoms of colitis, and the effect of HD intervention is better than that of UC intervention. This study offers new insights into the mechanisms of FMT clinical intervention in IBD.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Animais , Anti-Inflamatórios/farmacologia , Bactérias/metabolismo , Colite/tratamento farmacológico , Colite/terapia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/terapia , Sulfato de Dextrana/toxicidade , Transplante de Microbiota Fecal/métodos , Humanos , Camundongos
19.
Gut Microbes ; 14(1): 2039048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188058

RESUMO

Quorum sensing is a molecular signaling-based communication mechanism in prokaryotes. In the basic mode, signaling molecules released by certain bacteria are sensed by intracellular receptors or membrane-bound receptors of other members in the community, leading to the collective isogenic signaling molecule synthesis and synchronized activities. This regulation is important for the symbiosis of the bacterium with the host, as well as virulence and biofilm formation. Notably, quorum sensing signaling molecules are not only able to control microbial community behavior but can likewise regulate the physiological status of host cells. Here, we provide a comprehensive review of the importance of quorum sensing signaling molecules in gram-negative bacteria in regulating host cell function and gut health, and suggest possible opportunities for application in combating human and animal diseases by blocking the pathways through which quorum sensing signaling molecules exert their functions.


Assuntos
Microbioma Gastrointestinal , Percepção de Quorum , Animais , Bactérias/genética , Bactérias/metabolismo , Bactérias Gram-Negativas , Percepção de Quorum/fisiologia , Virulência
20.
Transbound Emerg Dis ; 69(4): e236-e243, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34396699

RESUMO

Influenza viruses have been posing a great threat to public health and animal industry. The developed vaccines have been widely used to reduce the risk of potential pandemic; however, the ongoing antigenic drift makes influenza virus escape from host immune response and hampers vaccine efficacy. Until now, the genetic basis of antigenic variation remains largely unknown. In this study, we used A/swine/Guangxi/18/2011 (GX/18) and A/swine/Guangdong/104/2013 (GD/104) as models to explore the molecular determinant for antigenic variation of Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses (SIVs) and found that the GD/104 virus exhibited 32- to 64-fold lower antigenic cross-reactivity with antibodies against GX/18 virus. Therefore, we generated polyclonal antibodies against GX/18 or GD/104 virus and a monoclonal antibody (mAb), named mAb102-95, targeted to the haemagglutinin (HA) protein of GX/18 virus and found that a single amino acid substitution at position 158 in HA protein substantially altered the antigenicity of the virus. The reactivity of GX/18 virus containing G158E mutation with the mAb102-95 decreased eightfold than that of the parental strain. Contrarily, the reactivity of GD/104 virus bearing E158G mutation with the mAb102-95 increased by 32 times as compared with that of the parental virus. Structural analysis showed that the amino acid mutation from G to E was accompanied with the R group changing from -H to -(CH2 )2 -COOH. The induced steric effect and increased hydrophilicity of HA protein surface probably jointly contributed to the antigenic drift of EA H1N1 SIVs. Our study provides experimental evidence that G158E mutation in HA protein affects the antigenic property of EA H1N1 SIVs and widens our horizon on the antigenic drift of influenza virus.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Aminoácidos , Animais , China , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A/genética , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/veterinária , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...